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Abstrac 

We introduce two changes with respect to the substantial literature dealing with the determinants of 

firms’ clean energy innovations. First, we consider, not the firms’ performance in clean innovations, 

but the firms’ specialisation in these new technologies, through the index of revealed technological 

advantages. Secondly, we test the effects of variable path dependence (the past level of specialisation) 

and technological diversification. Our empirical analysis is based on a sample of 946 large global 

firms, which have a very high level of R&D expenditure. The results of the different estimations show 

that: 1) there is a path dependence effect, i.e. the past specialisation in clean energy technologies 

explains the current specialisation, 2) the path dependence effect is stronger in the frame of recency: 

the recent specialisation better explains the current specialisation than does the former specialisation, 

3) the past technological diversification explains (but only weakly) the current specialisation in clean 

energy innovation. Otherwise, some determinants highlighted for firms’ innovation performance also 

play a role, in particular the firms’ knowledge capital in clean technology.  

 

Key words: patent, Firm’s specialisation, clean technology, path dependence, technological 

diversification, knowledge 

 

Introduction: research question and contribution 

The transition towards a clean technologies economy, allowing fossil fuel emissions to be reduced, is 

acknowledged to be a very important challenge for limiting the effects of global warming. Numerous 

studies have noted that a real commitment by the private sector to producing new clean energy 
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technology is needed (see among others Veugelers, 2012). This paper adopts this view by considering 

and explaining the level of large worldwide firms specialisation in the production of clean 

technologies aiming at triggering a drastic reduction in greenhouse gas emissions. Among the more 

relevant studies, there appears to be a consensus to consider that a high oil price tends to drive energy 

saving innovations (Popp, 2002; Hassler et al., 2012). In a very different vein, Aghion et al. (2016) 

show how carbon taxes could trigger clean innovations (meaning technology improvements that have 

a positive impact in terms of the decarbonated world) in the automobile sector. Acemoglu et al. (2012) 

suggest a slightly different insight; they support the idea of a combination of research subsidies and 

carbon taxes in order to redirect technological change towards much cleaner technologies. All these 

studies propose a mix of regulation and incentives to channel the technological change in order to 

trigger a transition towards a cleaner economy. These types of analysis drive us to consider that firms 

in the private sector have to modify their technological specialisation in favor of clean technologies. In 

this context specialisation is the phenomenon that is of crucial importance here.  

With respect to the technological specialisation, the literature underlines that it is highly stable over 

time and highly differentiated according to the main products (Patel and Pavitt, 1995). Regarding the 

scale of firms’ technological specialisation, two opposing trends appear in the literature (Breschi et al., 

2003). One suggests that the firms focus their research on a small number of technologies, and tend to 

be rather specialised. On the other hand, authors claim that large firms are constantly engaged in 

opening up windows on new technologies (Granstrand et al.,1997), or investing in technologies that 

are complementary in terms of their knowledge base (Breschi et al., 2003). In other words, 

diversification is not marginal. 

 

In this paper we do not discuss the underlying economic mechanisms behind the direction of 

technological change, but we rather want to highlight their implications in terms of the firms’ 

knowledge base and specialisation drivers. We are particularly interested in one specific class of green 

innovations: those in the energy field dedicated to mitigating global warming and reducing GHG 

emissions (Veefkind et al., 2012). Consequently, along the lines of previous works (Laurens et al., 

2016a; Laurens et al., 2016b) we define clean inventions or clean technologies (or clean tech) as 

coming under the umbrella of greentech inventions, and specifically those which contribute to the 

mitigation of global warming and reductions in GHG. In this paper we basically address clean 

inventions
1
. We have built a specific sample of large, global, mainly industrial firms, for which we 

                                                           
1
 Clean energy technologies could be considered as a particular set of technologies matching a technological 

paradigm. On this notion we draw on Dosi and Nelson (2010). A paradigm embodies a definition of the relevant 

problems to be addressed and the patterns of enquiry in order to find out solutions. Encompassing scientific and 

technological principles relevant to meeting those tasks, and the specific technologies employed it entails 

specific patterns of solution to selected techno-economic problems. Here in the case of clean technologies the 

search aims to mitigate global warming by decreasing the volume of GHG put in the air. De Stefano et al. (2016) 

provide rich empirical insights on the management of clean technology in the car industry. 
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follow the patenting activity as a measure of their inventive performance in the field of clean energy 

technologies
2
. 

 

The question of firm specialisation has gained the attention of scholars for a long time. But 

surprisingly we know little about the causes or the drivers of this process, however crucial in order to 

explain the firm technological and economic performance. There are two notable exceptions. For 

example, Malerba and Montobbio (2003) define international technological specialisation as the 

technological performance of a country in a specific technology relative to its overall international 

technological performance. In fact, they use RTA (Revealed Technological Advantages) as a measure 

of country specialisation for three industrial sectors (Chemicals, Electronics and Machinery). Two 

results merit particular attention. Specialisation is a persistent process, in other words, it is a path-

dependent trend. Moreover, as a performant process it is affected by the direction of cross-sectoral 

knowledge spillovers within countries. On the other hand, Nesta and Dibiaggio (2002) argued that 

technological specialisation is a twofold process of knowledge accumulation and articulation of given 

scientific and technological disciplines. They conclude that the nature of technological specialisation 

in a specific industry changes over time. At the beginning of an industry, when a new technological 

paradigm emerges, firms tend to have narrow technological portfolios, while in the phase of maturity 

firms’ technological portfolios become larger. It must be noted that, if many empirical studies deal 

with the determinants of firm innovative performance in clean technologies (for example among those 

that are more documented: Aghion et al., 2016; Laurens et al., 2016b; Stucki and Woerter, 2012), to 

the best of our knowledge we have no previous work on the drivers of firm specialisation in clean 

technologies.  

We address this issue through the behavior of large global firms with regard to their innovative 

activity in clean technologies, measured by their patent applications.  

The aim of the paper is twofold. First we extend the current literature by emphasizing new 

technological specialisation drivers and how they can work. Second we contribute to the literature on 

clean technologies in several ways. We suggest measuring the extent to which firms are involved in 

the production of clean technology through an index of relative technological advantages which we 

use for the first time in the context of firms. This approach can be considered as a specialisation 

approach, as opposed to an innovative performance approach, recently developed by the literature (see 

for example Aghion et al., 2016; Laurens et al., 2016b; Stucki and Woerter, 2012). We give more 

                                                                                                                                                                                     
According to Dosi and Nelson (2010) the main features of technological paradigms both provide a focus for 

efforts to advance a technology and channel them along distinct technological trajectories in the space of 

techno-economic characteristics of artifacts and production processes. Trajectories may be understood in terms 

of the progressive improvements in the supply responses to such potential demand requirements. Because the 

paradigm channels the progress and the search tend to improve the existing technological knowledge we stay in 

the frame of path-dependent adaptation 
2
 Here we deal with technological innovation and do not address others kinds of innovation that could be 

important for firm environmental performance (Gilli et al., 2014, Mazzanti and Rizzo, 2017). 
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details on the indexes we use in this research in section 3 and appendix 1. We identify the main 

determinants of clean technology specialisation at the large firm level. In particular, we show the 

pivotal role of the path dependence process, mitigated by the level of firm technological 

diversification. Lastly, we contribute to organizational and strategy research by considering how stable 

the process of path dependence is, related to a particular set of technologies (clean, in fact) when 

technological diversification is dealt with as an independent variable. 

We present our ideas as follows. In section 1 we identify our theoretical framework. Section 2 is 

dedicated to the formulation of our main hypotheses. Section 3 considers the dataset we have built, the 

main variables we have defined and the econometric strategy we have followed. Finally, in section 4, 

we present and comment the results. 

Section 1. Theoretical framework 

Our analytical approach has its origin at the crossroads of two important economic theoretical 

paradigms: the knowledge-based approach of the firm, and the Smithian tradition emphasising the 

importance of specialisation. 

 

The starting point of the knowledge-based approach of the firm is the rich idea that the essence of the 

firm lies in its ability to create, transfer, assemble, integrate and exploit knowledge assets (Teece, 

2000). This idea is shared by the evolutionary tradition through the notion of routines (Nelson and 

Winter, 1982) and the model of firm dynamic capabilities (Teece and Pisano, 1994). In this 

framework, innovation must be thought of as a process of knowledge creation with economic benefits. 

In that model, knowledge is a key resource for driving superior firm performance, as taught by the 

resource-based view of Barney (1991). Innovation is the result of a variety of activities, even if 

Research and Development and Design are often important determinants. On the other hand, learning 

is a generic term for delineating how individual agents and organisations accumulate bits of 

knowledge over time and behaviour. But the important point is that learning processes of different 

kinds play a major role in accumulating the competence that is necessary to generate new 

technological knowledge and to introduce innovations (Antonelli, 2011). Such a process is a path-

dependent phenomenon. In the knowledge-based view of the firm, the tangible and intangible 

resources managed by organisations are mainly irreversible. Because the firms are localised in a 

limited section of the technological knowledge and competence space, they cannot innovate in many 

directions. In other words, their competences and their capacity for learning are technologically 

localised. This  limits the global search of firms and constrains their search for new technologies in the 

proximity of techniques already in use (Antonelli, 2011). It explains the important property of 

technological path dependence, marked by strong irreversibilities and lock-ins. But the firms are not 

totally stuck in their context. Firms can change their trajectories as a result of their intentional actions. 
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The management of such a bifurcation is complex by nature and depends on several idiosyncratic 

elements captured in the economic context and geographical locations. In this respect, the vision of the 

firm matters (Swann and Gill, 1993). 

 

The idea that specialisation produces an engine of firm performance goes back to the seminal analysis 

by Adam Smith on the division of labor: an increased specialisation in knowledge production leads to 

higher levels of performance in the production processes of goods and services (see among others 

Swann, 2009). The traditional competence-based approach took over this idea to a certain extent. It 

crucially underlines the fact that firms tend to build their competitive advantage by specializing their 

assets around core competencies (Prahalad and Hamel, 1990). Focusing their investment on a limited 

number of expertise fields reduces the range of the firms' technological knowledge. Specialisation has 

several advantages. Among these, and perhaps the more important, are the economies of scale 

associated with the learning process. Moreover, this facilitates the transfer of knowledge between the 

core technologies of the firm (Garcia-Vega, 2006). At last companies that focus their R&D in a small 

number of technological fields can profit from the specialisation of their research activities. It may be 

relevant to also consider the property of local search (Rosenkopf and Nerkar, 2001), meaning that 

firms focus their research projects close to their operative technologies (Nelson and Winter, 1982) as a 

particular attribute of specialisation.  

 

On the basis of these principles, we assume that knowledge creation is considered to be a path-

dependent evolutionary process in which learning and creative voluntary strategies are strongly 

involved (Nelson and Winter, 1982). There is path dependence because the acquisition of a certain 

type of knowledge facilitates the acquisition of further knowledge of the same type (Loasby, 1999). 

Much of the bulk of inventions produced in a particular time period involves the recombination of past 

bits of  knowledge spread over time. Path dependence means that the current situation or the current 

equilibrium towards a process converging is due to a historical path followed by the economic system 

(David, 1997)
3
. Following the analysis by Arthur (1989), path dependence sets up a way of capturing 

an increasing return of adoption. Lock-in effects and self-reinforcing mechanisms set up important 

attributes of path dependence dynamics (Vergne and Durand, 2010; Cecere et al., 2014). As far as 

technology is concerned there exists in the literature a large range of explanations for this process. One 

of them, popularized by Dosi (1988), is related to technological channeling: the choice for solving 

technical problems is defined by the prevailing knowledge that restricts the possible technological 

                                                           
3
 As stated by Antonelli (2011): “Path dependence is the specific aspect of complex dynamics most apt to 

understand the process and the outcomes of the interactions among myopic agents embedded in their own 

context and constrained by their past decisions, yet endowed with creativity and able to generate new knowledge 

by means of both learning and intentional innovative strategies, as well as through structural changes”. An 

important point deserving of attention is that a path-dependent process is not a pure picture of a past-dependent 

evolution. 
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combinations. But this lock-in effect (Arthur, 1989) may lead to an evolutionary process that 

converges towards inferior technological solutions.  

In general empirical studies consider a simple model of path dependence in which the pivotal variable 

Y(t) is explained by Y(t-n) and other regressors (see for example Malerba and Montobbio, 2003). New 

insights related to Path dependence as an approach characterising organisational evolution have been 

recently suggested (see Cecere et al., 2014). For example, Vergne and Durand (2010) have noted that 

the impact of initial conditions is weak. Sydow et al., (2009) have conceptualised the emergent process 

of path dependence according to three distinct stages. Some authors, more critical towards the main 

properties of path dependence, have built new alternative approaches. For example, Garud et al. 

(2010) mentions the path creation in order to show that ‘lock in” is a temporary stabilisation of the 

paths in the making. Analyses do not exclude the fact that the organisation breaks the path and fights 

the self-reinforcing mechanisms. For example, Sydow et al. (2009) have pointed out that the likely 

breaking of the path can vary in intensity and complexity. Without excluding complex cases, they 

promote the idea that the effective restoration of a situation of choice between diverse alternatives is 

possible. But breaking organisational paths seems to be easier than escaping a technological lock-in 

Sydow et al. (2009). 

 

The necessary specialisation of the firm knowledge base does not exclude a certain level of 

technological diversification
4
. A firm is diversified in terms of technological activity when it masters 

several technological fields of knowledge more and less interdependently (Granstrand et al., 1997) as a 

prerequisite for production (Breschi et al., 2003). For Quintana-Garcia and Benavides-Velasco (2008), 

it can be defined as diversity in the knowledge system and principles underlying the nature of products 

and processes. The first advantage of technological diversification (often termed technological 

diversity) is related to cross-fertilization between different technologies mastered by firms 

(Granstrand, 1998). A large strand of the literature highlights that firms that are more technologically 

diversified can create (and maintain) competitive advantages. Specialisation and diversification must 

be seen as “the 2 faces of the same coin”
5
. Consequently, the technological diversification and the 

technological specialisation can evolve together
6
. According to Nelson (1959), firms diversifying their 

                                                           
4
 Regarding the technological diversification, it has been found that the larger corporations have the greater 

technological diversification (Chandler, 1990) and that firms tend to become more diversified over time 

(Granstrand et al., 1997). 
5
 In this paper specialisation is the related opposition clean/not clean, by contrast diversification is defined by 

taking a large spectrum of technologies. 
6
One interesting idea would be that specialisation and diversification could be linked to the 

exploitation/exploration trade-off. Academics in Strategy and Organization Theory observed that dynamic 

capabilities are anchored in a firm's ability to both exploit and explore (March, 1991; Weick, 1969). This well-

known trade-off, exploitation and exploration, sets up a general theoretical frame through which specialisation 

and diversification can, to some extent, be compatible (Benner and Tuschman, 2003). The basic assumption here 

is that when a firm specialises its technological activity it mainly follows an innovation trajectory that aims to 

exploit its accumulated knowledge. In contrast, if it diversifies its technological base it can perform exploratory 

innovations on a larger scale. As a consequence, specialisation and diversification, far from being opposed, are 
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technological competence are likely to benefit from greater new technological opportunities. Firms 

obtain a more diversified profit from spillovers generated by their R-D activities because they can 

capture the spillovers across technologies. They internalize the social benefits of their technological 

improvements. Finally, according to Garcia-Vega (2006), technologically diversified firms may invest 

more in R&D (also supported by Granstrand et al., 1997), because the diversification in their research 

portfolio tends to reduce the risks inherent in R&D projects. It is a well-known argument put forward 

in favor of diversified portfolios (Tirole, 1988). Having many advantages, technological 

diversification is often considered as a determinant of firm innovative performance and a driver firm 

growth (Granstrand et al., 1997; Cantwell et Piscitello, 2000).  

In accordance with this later view, we consider that managing technological diversification establishes 

a capacity to achieve technological bifurcations. This means that the firm can follow (exploit) a new 

technological path because it has explored it before. In other words, technological diversification can 

prevent from a lock-in effect in a poor technological option, and can also create the conditions for 

“curbing” the specialisation path inherited from past decisions, 

 

Path dependence and technological diversification have been two consistent themes across several 

approaches to research in technological performance. They are at the core of the framework we 

mobilize in this paper for explaining technological specialisation.  

 

Section 2. Research Hypotheses 

 

Path dependence is at the core of this paper. As a consequence we have to put forward hypotheses 

related to its effects. Following the empirical evidence gathered by Malherba and Montobbio (2003), 

the process of specialisation on a particular set of technological knowledge is path dependent. As a 

consequence, the first hypothesis related to clean technologies that we want to test is:  

 

Hypothesis 1  

The more a firm was specialised in clean technologies in the past, the higher its present level of 

specialization is.  

 

The hypothesis is coherent with the idea that an economic agent is locked in a certain path (here of 

specialisation) created by the choices made in the past. In such a context a bifurcation is risky and 

costly (due the presence of switching costs). Consequently, the decision to stay on the same path is 

fully rational.  

                                                                                                                                                                                     
two different ways to create new technologies. The two ways necessarily coexist, in particular within 

ambidextrous organizations. It remains exploitation may be related to functional inertia within a given 

technological trajectory, while exploration increases the firm’s technological scope and responsiveness to new 

customer needs (Henderson et al, 1998).  
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Another aspect deserves special attention. The idea of path dependence means history matters. But 

nothing tells us if we have to go a long way back in the past, or only to very recent periods of time. 

Evidence from studies dealing with knowledge recombination may help us. The findings of the paper 

by Nerkar (2003) suggest that there is a balance in combining current knowledge with the knowledge 

available across large time spans to explain the impact of new knowledge. But recency is never the 

unique law of making new knowledge. Academics have contested the economic importance of recent 

knowledge for recombination and have proposed the idea that old (or less recent) pieces of knowledge 

matter as well (Adner and Snow, 2010; Capaldo et al., 2015)
7
. As a consequence, maturity may be 

important in many cases. For our study on path dependence we adopt the view the path followed in 

recent past time periods is important and could have more impact. As far as the issue of the time effect 

is concerned we assume that, to explain the current scale of technological specialisation, it is not the 

long period of specialisation that matters. In short, the current scale of technological specialisation is 

better explained by the level of firm specialisation expressed over a recent time period (to put it 

simply: recency matters). Because clean technologies are new at the very beginning of their 

development, it seems to us that the mechanisms envisaged by Nerkar (2003) play here in favor of 

recency. Evidence gathered at the nation level goes in the same direction (see for instance the work by 

Malerba and Montobbio, 2003). It follows: 

  

Hypothesis 2 

The recent level of firm past technological specialisation explains the present level better than that of 

a long period. 

 

In the theoretical framework pictured in section 1, learning is a crucial phenomenon for firm 

technological performance. It pushes the firm’s capacity for creating and maintaining sustainable 

advantages. Moreover, in the literature path dependence is mainly related to learning. Empirical 

insights on the path dependence of environmental innovation are now available at the national level 

(Popp, 2002; Popp et al., 2011), at the industry level (Stucki and Woerter 2012; Crespi et al., 2016), 

about a single industry (Aghion et al., 2016), or for a large set of MNCs (Laurens et al., 2016b). These 

studies indicate that there is a robust positive association between the (past) knowledge-accumulated 

capital related to clean technologies and the number of inventions produced in that field, even after 

controlling for industry and national fixed effects and other factors. The magnitudes of the coefficients 

are very similar, while the data and the scale of the investigation are different. Path dependence is a 

little complex because firms accumulating large technological experience in other technologies (not 

clean) perform better in the production of clean inventions (see in particular: Aghion et al. 2016; 

Laurens et al., 2016b). This cross-technology learning effect, that is internal to the firm is, however, 

                                                           
7
 We can assume here that the type of technology matters for defining the relevant timing.  
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small in comparison to those related to learning effects within the same technology. To put it simply, 

intra-technology learning is found to be strong over time (evidenced in Laurens et al., 2016b). 

In the framework of our research the phenomenon we want to explain is firm specialisation in clean 

technologies. Drawing on the quoted empirical studies we expect a positive association between the 

capital of knowledge accumulated in clean technologies and the current level of firm specialisation:  

Hypothesis 3 

The higher the past capacity of learning in clean technologies of the firm was, the greater its level of 

present clean technological specialisation is 

 

The issue of diversification is crucial for our study because we want to track firms’ capacity to switch 

their dominant technological knowledge base towards cleaner environmental trajectories. Recent 

empirical studies tend to support the idea that a diversified technology base positively affects firm 

innovative competence (Quintana-Garcia and Benavides-Velasco, 2008). In the same vein, on a panel 

of European R&D active companies, Garcia-Vega (2006) finds that both R&D intensity and patents 

increase with the degree of technological diversification of the firm. Interestingly, one advantage of 

technological diversity proposed by Granstrand et al. (1997) is that it increases the opportunities to 

engage in technology-related new business. From this finding we can hypothesize that a firm more 

diversified in terms of technological competence will be more prone to seize the opportunity to engage 

economic and competence resources in clean technologies. A strong specialisation in a particular 

technology does not exclude a more local diversification within this field or an “exotic” diversification 

far from the dominant technology (Suzuki and Kodama, 2004). 

How to explain that technological diversification could have an impact on clean technologies 

specialisation? The firm’s entire technological experience included in not clean technologies is not lost 

for clean energy technologies (evidence provided by Aghion et al., 2016; Laurens et al., 2016b). As a 

consequence, we test the hypothesis that past technological diversification enables firms to enhance 

their specialisation in clean technologies in the current time period. Here it is important to underline 

that a very high level of technological diversification can damage the balanced state between diversity 

and specialisation. In other words, after a certain threshold, more diversification does not entail more 

specialisation. In this context an inverted U-shape relationship should be expected (raised for example 

by Quintana-Garcia and Velasco (2008)). Due to the small number of studies dealing with the 

specialisation determinants it appears difficult to develop a definitive precise hypothesis on the form of 

the relationship between these parameters. As a consequence, we think that the best option is to test a 

realistic hypothesis:  
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Hypothesis 4 

The higher the past firm technological diversification was, the greater its level of clean technological 

specialisation is 

 

In the following sections, we test the different hypotheses implementing a cross section econometric  

model. 

Section 3.  Methods  

In this section, we present the dataset, the variables, the econometric specification and estimator in 

turn. 

3.1. Dataset 

As in many previous studies, we use patent data as a proxy to follow inventive activities in the energy 

clean tech field (see Brunnermeir and Cohen, 2003; Nameroff et al.; 2004; Wagner; 2007, Albino et 

al., 2014; Popp, 2006). In order to have a complete overview of the R&D activities, to avoid 

geographical bias and to be as close as possible to the date and location of the inventions, as proposed 

for example by de Rassenfosse (2013), we follow inventive activities using the global priority patent 

applications filed worldwide, i.e. the very first patent applied for to protect a new invention, wherever 

it was filed.  

We have first collected the priority patent applications filed between 1986 and 2005 by more than 2 

000 worldwide firms with intensive R&D activities considering a consolidated perimeter of the firms. 

Then we have tagged among the overall patent portfolios, the patents related to energy clean tech 

using a classification available in the patent database (Patstat) .  

The list of large industrial R&D performers was established by complementing the list of 2000 firms 

identified in the 2009 edition of the IPTS “Industrial R&D Investment Scoreboard”, by top patent 

applicants from the WIPO, EPO and USPTO rankings. This produced a final list of 2300 firms. Then, 

relying on the Orbis database edited by Bureau van Dijk Electronic Publishing, we identified the 

subsidiaries included in the consolidated perimeter of these industrial groups (considering only 

subsidiaries in which one of the Global Ultimate Owners had more than 50.01% of the share). 

Corporations’ boundaries are based on a single outline of subsidiaries established in 2008. We end 

with a list of more than 316,000 names (global firms’ ultimate owners and subsidiaries). 

After preliminary steps of name cleaning and name harmonizing the firm database and the patent 

database are matched together by looking for the names of the firms and their subsidiaries as potential 

applicant names in the Patstat database (containing more than 22 million applicants’ names). After 

further final checking and manual cleaning of the results of of the database matching, we have ended 

up with a patent database of more than 8 million patents filled between 1986 and 2009 by 2,058 firms. 
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This includes approximately 9.5 million applicants and 19 million inventors. In order to focus on the 

largest and most R&D-intensive firms, we have then restricted our set of firms to 946 firms that have a 

sustained inventive activity and which filed at least five patents in the mid-1990s (between 1994 and 

1996) and in the mid-2000s (between 2003 and 2005). These 946 firms are our set of top global R&D 

investors. They have set up our population of firms on which we have built our empirical analysis. 

At last, we identify the priority patents related to energy cleantech inventions as the patents belonging 

to the Y02E class in the Patstat database. This classification is now widely adopted by researchers 

using cleantech patents (Bointner, 2014; Frankhauser 2013, Laurens et al., 2016a) and covers a broad 

range of clean energy technologies. It gathers inventive technologies in the field of energy that control, 

reduce or prevent greenhouse gas emissions of anthropogenic origin, as set out in the Kyoto Protocol
8
. 

In our final energy cleantech patent dataset, 68.2% of the patents are in the field of “Technologies with 

a contribution to GHG emissions mitigation” (this covers energy storage (batteries) (44.8%), fuel cells 

(17.1%), hydrogen technology (2.2%)), 18.4% relates to “Renewable energy sources” (including 

photovoltaic (13.3%), wind (1.8%), thermal solar (1%), hydro (2.1%), oceanic (0.7%) and geothermal 

(0.1%) energies), 3.4% are in “Nuclear Energy”, 2.6% in “Technologies for the production of fuel of 

non-fossil origin” (biofuel (0.7%), from waste (1.9%)), 2.6% in “Combustion technologies with 

mitigation potential” (Combined Heat and Power, …) and 2.6% in “Technologies for efficient 

electrical power generation, transmission or distribution”. 

From 1986 to 2005, our set of firms applied for 99,773 Y02E priority patents. During the period 1994-

1996, 1.62% (11 445 patents) of all our firms’ patents belonged to the Y02E classification. This share 

grew to 2.30% (20 273 patents) in 2003-2005.
9
 

3.2. Variables  

Explained variable 

We compute the index of relative specialisation of firms in clean energy tech as the ratio of their 

specialisation relative to the average specialisation of firms in clean energy tech (C for Clean energy) 

(see appendix 1 for details). In order to avoid the noise induced by instable patent filing, we decided to 

compute the index over a three years period, the 2003-2005 period. The specialisation of firm i in 

clean energy is then the share of clean energy tech C in the firm patent portfolio 𝑆𝑖𝑡 =
𝑃𝑖𝑡
𝐶

𝑃𝑖𝑡
⁄  where P 

is the number of patents (clean or total) and t=2003-2005. In the same way, the average clean energy 

                                                           
8
 This classification was built using EPO experts, who first select technologies or applications that have the 

potential for the mitigation of, or adaptation to, climate change. They then define procedures to retrieve the 

relevant patents, relying both on existing classifications (ICP, ECLA) and a lexical analysis of abstracts or 

claims (EPO, 2010; Veefkind et al., 2012). 
9
 Appendix 2 provides information on the sample composition. 
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specialisation C over the period is in our sample 𝑆�̅� =
∑ 𝑃𝑖 𝑖𝑡

𝐶

∑ 𝑃𝑖 𝑖𝑡

⁄ . The relative specialisation of 

firm i in clean energy is thus defined by 𝑅𝑆𝑖𝑡 =
𝑆𝑖𝑡

𝑆�̅�
⁄  where 𝑅𝑆𝑖𝑡 is between 0 and ∞. We thus use the 

same transformation as in Laursen (1998), and we obtain a symmetric relative specialisation index: 

SR𝑆𝑖𝑡 =
(𝑅𝑆𝑖𝑡 − 1)

(𝑅𝑆𝑖𝑡 + 1)⁄  that can vary between -1 and +1 and is computed over the 2003-2005 

period.  

Explanatory variables 

The present technological specialisation (t=2003-2005) of the firms is explained by the firm past 

technological specialisation, the level of knowledge capital (the capacity of learning) and the 

knowledge diversification.  

We use two complementary dimensions to understand how past technological specialisation impacts 

the present specialisation in clean energy technology inventive activities. We first consider the past 

specialisation of firms in clean energy technology fields. After SR𝑆𝑖𝑡, we thus compute SR𝑆𝑖𝑡−1 where 

t-1 is the value of the variable related to the past time period. Two definitions will be however 

provided for this lagged variable. The index can be computed over the overall 1986-2002 period but 

also on sub-periods such as the recent 1994-2002 period. 

Using the patent portfolio, we compute the 2002 stocks of inventions made over the 1986-2002 period 

in order to approximate the 2002 firm’s capital of knowledge in the field of clean energy technology 

(C) or in all other technological fields except clean energy technologies (-C for technologies other than 

clean energy). The perpetual inventory is completed according to: K
k
it = P

k
it + (1-δ) K

k
i,t-1 with k=C, -C. 

K is the stock of knowledge accumulated for year t that is approximated by the inventions filed in year 

t plus the depreciated stock of inventions filed before this. We use a standard knowledge depreciation 

rate, δ, which is 15%. K
k
it variable is taken in logarithm.  

We define the variable related to diversification of technologies controlled by firm i over the 1986-

2002 period  as DIVit−1 , that is calculated as the inverse of the Herfindhal Index computed on the IPC 

shares of patents at the two-digit level (35 technology classes). DIV is the equivalent number: it is the 

number of technology fields, therefore including technologies other than cleantech, where a firm i is 

skilled if the importance of the different skills was equivalent
10

. Diversification can be squared to test 

if a concave relationship exists between specialisation and diversification. Too much variety can 

                                                           
10

 Diversification is linked but not collinear to specialisation: one firm can be highly or not specialised in green 

tech with a very low or very high number of invention fields.  
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indeed be a problem to master and be able to derive from it green tech inventions. In other words, as 

often considered in the literature the relation can be considered as concave.  

At the firm level, we defined additional variables to control for sectoral fixed effects. Using the OECD 

classification of industries and services, we defined six different dummies based on industry R&D 

intensity: Low Tech, Medium Low Tech, Medium High Tech, High Tech, Knowledge intensive 

services (KIS) and Low Knowledge Intensive service (LKBIS=1) sectors (Eurostat). We further 

defined a set of industries in which energy is core and thus innovation around clean energy 

technologies is critical. The definitions of these variables are detailed in table 1. 

 

Insert here table 1 

 

To consider the differences among countries, we controlled for national heterogeneity, introducing 

national dummies or national variables. Differences in national market size and wealth are likely to 

influence the ability of firms to develop new technologies, particularly in the fields of clean energy 

technologies. The first dimension is proxied by GDP and the second by GDP per capita. In accordance 

with the large number of countries we have in our dataset, we cannot approximate the role of the 

various national policies in clean energy to the different affiliates over the period. We also introduced 

additional country variables dealing with environmental issues (See Laurens et al., 2016b). To control 

for this possible transnational policy effect, we defined a EU dummy that is set to 1 for countries 

belonging to the EU, and set to 0 otherwise, in order to assess the influence of home country policies 

on our multinationals.    

3.3. Econometric strategy 

Our cross-sectional model explains firms’ relative specialisation in energy cleantech:  

SRS𝑖𝑡
𝐶 = 𝛼1 SRS𝑖𝑡−1

𝐶 + 𝛼2 DIV𝑖𝑡−1 + 𝛼3 𝐾𝑖𝑡−1
𝐶 + 𝛼4 𝐾𝑖𝑡−1

−𝐶 +∑𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 + 𝜀𝑖 

where the specialisation over the 2003-2005 period (t) is explained by the past specialisation in energy 

cleantech, the level of technological diversification and the stock of knowledge accumulated over the 

1986-2002 period. 

On our core variable, which is the impact of past specialisation, the first hypothesis H1 tells us that we 

expect 𝛼1 > 0. More precisely, when we differentiate the pace of specialisation, separating 

specialisation over the 1986-2002 period from the more recent specialisation index for 1994-2002, we 

expect that the impact of specialisation on present specialisation is higher for recent specialisation. In 

other words, that 𝛼1 is significantly higher when SRS𝑖𝑡−1
𝐺  is defined over the 1994-2002 period than 
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when it is defined over the 1986-2002 period. Finally, the scope (diversification) of technology is 

expected to be positively related to the subsequent specialisation (𝛼2 >0).  

Firms are more likely to be able to specialise in clean energy technologies when their technological 

level (measured by their capital of knowledge a measure of the learning capacity) in that field is high 

(𝛼3 >0). The accumulated experience in other technologies (the capital of knowledge accumulated in 

those technologies) is however expected to hamper specialisation in new clean energy technologies 

(𝛼4 <0). 

The explained variable, SR𝑆  is continuous and a standard OLS estimator is implemented in order to 

identify the parameters of interest (Model 1). Standard errors are robust standard errors. However, 

more than half of the firms in our sample have no patent in clean technology over the 2003-2005 

period. Therefore, more than half of our sample has a 0 value for RS and thus a -1 SRS value 

observed. However, we can consider invention as a latent variable: many firms produce inventions in 

many fields and do not file them for different reasons. It means that the observed values for RS and 

SRS are not the true values for this category of firms that are actually specialised. In order to deal with 

the potential bias in the identification of the coefficients due to the censored data, we introduced a 

Tobit estimator. The results obtained with the OLS estimator are also provided.  

The estimations in Model 2 and 3 aim to test H1 and H4. In Model 3 we used a variable for the square 

of DIV in order to check the existence of a U-shaped relationship related to this factor. The Model 4 

aims testing H2 related to the larger impact of recency. Finally, with Model 5, we include a variable of 

interaction between green specialisation and technological diversification (DIV). Because we always 

put in the equations the variable related to the firm knowledge capital in clean technologies we 

consequently test H3. Our results are robust to many different specifications (available upon request). 

Further robustness checks were performed in line with Laurens et al. (2016b).Descriptive statistics are 

reported in Table 2. It shows that firms in our sample are on average have a relative specialisation of 

1.35 (or SRC of -0.54) over the 1986-2002 period. Firms on average master about 6 different 

technological fields and are producing much more inventions in non-clean technologies than in clean 

technologies (what was expected). The stocks of patents are on average obviously lower than 1 patent 

when Clean Energy is considered. 39% of firms did not file any patent over the 1986-2002 period. The 

sample is dominated by multinationals doing business in high tech and KIBS where energy is at stake 

in 15% of cases. Many firms’ headquarters belong to EU. An appendix 3 displays the matrix of 

correlation. 

 

Insert here table 2 
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Section 4. Results  

The results are given in Table 3. We begin by commenting on the impacts of our two main 

independent variables, specialisation and diversification (DIV). 

The results for model 1 show there is a positive and significant association between past firm 

specialisation (over 1986-2002) and the current level of the firm specialisation index (2003-2005). 

There is a process of path dependence: past specialisation in clean energy technologies explains 

current specialisation. The results thus support our first hypothesis (H1). When we compute the 

specialisation variable to a more recent time period, the effect of the recent specialisation is found to 

be significantly higher than for the impact of a specialisation carried out on a longer period: the 

coefficient is indeed of 5% for 1986-2002 to be compared to 8% for 1994-2002 (t=40.7, p<0.01). This 

suggests that the path dependence effect is stronger in the frame of recency: the recent specialisation 

explains the current specialisation more and better, supporting our second hypothesis (H2).  

The (past) capital of knowledge accumulated in relation to clean technologies is found with a positive 

and significant influence on current SRC. Thus, when the stock of patents in clean technologies 

increases it is likely to increase the current (2003-2005) level of firm specialisation in this set of 

technologies. In contrast, the coefficient related to the (past) capital of knowledge in non-clean 

technologies is found without significant influence on the relative specialisation of firms in clean 

technologies. That supports our hypothesis H3.  

Whenever firms having a strong, consistent history in non clean technologies can also innovate in 

clean technologies (see Aghion et al., 2016; Laurens et al., 2016b; Stucki and Woerter, 2012), they 

cannot build the base required to achieve a relative technological specialisation in clean energy 

technologies. Of course, this result is conditional on the definition of our specialisation indicator. 

Moreover, it is robust enough to consider our findings with a certain generality. Firms accumulating 

large technological experience in clean technologies are thus better placed to obtain a higher level of 

specialisation in clean technologies. Thus, the technology learning effect that is internal to the firm 

exists. In contrast, there is no positive effect of cross technology learning. Because the value of the 

coefficient for past specialisation is larger than for learning effects (for all models), past investment in 

clean knowledge activity “pays” less than an ancient specialisation in clean technologies. 

Regarding the effects of our third independent variable of interest, firm technological diversification 

(over 1986-2002), it has a positive and significant effect (p<0.05) on firm specialisation. The result 

provides support for our H4 hypothesis that cannot be rejected. In accordance with our theoretical base 

on recombination theory the explanation may be the following: for producing clean minor inventions 

the firms need bits of knowledge coming from different technological fields, including in fields 

outside clean energy related fields. 
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The introduction of a second order term shows that there is no inverted U-shaped relationship for 

technological diversification as we have previously suggested. The introduction of a cross effect 

between past specialisation and past diversification does not bring much power to our model. The 

cross-effect is however found negative and significantly different from 0. The coefficient is different 

from 0 at 10% and multicollinearity problems hamper the proper identification of diversification 

parameters. A negative sign suggests that whereas the past diversification impacts positively the 

present relative specialisation in clean technologies, such variety may have a negative effect if the firm 

was already relatively specialised into clean energy fields.  

With respect to the control variables, many results are consistent with what we expected on the basis 

of our previous work (Laurens et al., 2016b). The size of the country (GDP) does not play a significant 

role. National market size does not appear to be a lever for firms to produce new clean energy 

inventions
11

. As stated by Laurens et al. (2016b), large firms from small countries are likely to be 

more active than others. The variable related to the level of technological development
12

 (GDP per 

capita) is negative and significant except for Model 1. As a consequence, it is difficult to claim that the 

technological level of the country would have a positive impact on a firm’s clean invention 

specialisation. The opposite seems more relevant: firms from less technologically developed countries 

tend to specialise their knowledge base in clean energy fields. This last finding was also supported by 

Laurens et al. (2016b), when dealing with large firm innovative performance in clean inventions 

(versus specialisation here). 

An EU dummy was not found to be influential on clean energy technologies. This result might suggest 

that EU policies and regulations do not help firms to develop specialised clean technologies.
13

. Other 

dummy variables aimed to assess the role of technological opportunities approximated by industry 

fixed effects. Two important features deserve attention here. Industry fixed effects are not found to be 

significant and are thus not introduced in our basic models. As expected, the energy sector dummy has 

a significant positive effect on specialisation in clean technologies, compared to others. It is within this 

sector that the firms are more specialised.    

 

Insert here table 3 

 

 

  

                                                           
11

 This result is opposed to the idea supported by Acemoglu (2002) according to which the size of the market is 

important for directing technical change. 
12

 Or economic development, in short. 
13

 At this stage it is important to recall that we address clean energy technologies specialisation just after the 

Kyoto Protocol, over the time period 2003-2005. 
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Conclusion 

We work on a sample of 946 large global firms having a very high level of R&D expenditures. We can 

summarise our main findings as follows as far as firm specialisation in clean technologies is 

concerned: 

• There is a process of path dependence: past greentech specialisation in clean energy 

technologies explains current greentech specialisation (Hypothesis 1) 

• The path dependence effect is stronger in the frame of recency: recent greentech specialisation 

explains the current greentech specialisation more and better (Hypothesis 2) 

• The firm capital of knowledge in clean technologies is a determinant of the firm specialisation 

in that area. (Hypothesis 3). 

• The past technological diversification significantly explains current the greentech 

specialisation (Hypothesis 4).  

Our model presents two significant improvements with respect to the literature that aims to better 

understand firm behaviour in clean energy inventions. First, we take firm level specialisation as a 

main phenomenon to be explained, and not firm performance, as is usually the case
14

. Second, as far 

as determinants are concerned, in our empirical models we consider both path dependence
15

 and firm 

technological diversification. Often only the first is envisaged as a powerful driver of firm innovation 

performance in a particular field (see Aghion et al., 2016). To the best of our knowledge, technological 

diversification (an index of technological variety) is never considered as a relevant driver. Our 

findings highlight the fact that large firms’ technological accumulation in clean energy (through their 

knowledge capital in clean technologies) sets up another channel for path dependence. This effect is 

correlated to internal learning. It means it is easier (and without doubt less costly) for a firm to develop 

innovations through its knowledge base in clean energy technologies. In contrast, the knowledge base 

accumulated in other technologies has a negative impact on firm clean energy inventions 

specialisation. 

 

Thereby we show that there is a path dependence effect in innovation production. A weak 

specialisation in clean energy technologies in the past entails a weak current specialisation. In other 

words, there is considerable inertia in innovation production that hampers the quick shift towards a 

cleaner system of energy. But our study underlines another point that is not seen in previous research 

on this topic: the path dependence effect is stronger in the frame of recency. This last point has 

obvious implications in terms of public environmental policy. If public policy tools succeed in 

                                                           
14

 It remains true to some extent that specialisation is also an index of relative performance. 
15

 It must be noted that path dependence is a very general phenomenon that we can apply to a large number of 

variables. 
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orientating current research towards clean energy innovation, this will able to mitigate the lock-in 

effect due to path dependence more quickly. And in any event, more rapidly than in a context marked 

by a long time period path dependence effect
16

. This is good news because it offers more effective 

effects on public policy. Our research enables a not so obvious finding to emerge: the more diversified 

a firm is in terms of a technological base in the past, the higher its level of specialisation in clean 

technology in the current period of time. As a consequence, technological diversification may 

constitute another potential lever for a public policy strategy aimed at a reorientation in favour of clean 

energy. 

In this paper we addressed the behaviour of large firms in terms of clean energy. On the other hand, as 

a likely extension, we can calculate our main dependent variable that is related to specialisation for 

each country. This presents two main interests. First, we will able to update the work by Malerba and 

Montobbio (2003) that has already shown a trend of path dependence for technological 

specialisation
17

, then, we could also examine the two-way relationships between national (country) 

specialisation and large firm specialisation. Our empirical findings provide a basis for further research 

into the design of new types of management related to clean energy innovation performance and 

specialisation. In this perspective, a focus on empirical work on firms from energy sectors could be a 

serious line of enquiry for improvements.  

  

                                                           
16

 We note that is not true for new small firms that have no past in technology. 
17

 They find that the concentration of innovative activities, the emergence of new innovators and technological 

cooperation positively affect international technological specialisation. 
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Appendix 1. Measurement issues 

 

We measure the firm technological specialisation drawing on Laurens et al. (2016a). This analysis 

enables us to measure both the clean technology specialisation and the clean technology performance.  

 

Let us use i= 1, 2, 3….n to index firms. We formally consider the firm patenting at time t as:  

 

Pi (t) = total number of new patents of firm i at time t  

P
c
i (t) = number of new patents of firm i in energy green technologies 

 

P
c
i (t) is the measure of firm performance in green. 

We measure the share of green patents in firm i patent portfolio as:  

 

Sij (t) = P
c
i (t)/ Pi (t)  (1) 

 

In other terms Si (t) is the firm i contribution to energy green technology at time period t. It is an 

alternative measure for firm green technologies performance.  

 

The index of relative specialisation in energy green technologies is defined for firm and the time 

period t as:  

 

Gi (t)= Si (t) / (∑∑i P
c
 i (t) / ∑∑i Pi (t ))   (2) 

 

where ∑∑i Pc
i (t) indicates all energy green patents in our dataset (for time t) and ∑∑i Pi (t ) 

the overall set of patents (whatever the technological field and for the overall number of firms) for 

time t. 

Gi (t) is the index we use as a measure a firm specialization in energy green technologies. 
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Appendix 2. The sample of firms and patents 

Table 4:. Distribution of firms, clean inventions and patenting,  

by firm country (2003-2005) 

Firm country 
Firm share 

(%) 

Share of clean 

patents (%) 

Share of all 

patents (%) 

North America 35.2 6.0 11.8 

     United States 34.0 5.7 11.5 

Europe 36.9 6.9 10.2 

     Germany 9.2 3.9 5.9 

     United Kingdom 6.2 0.2 0.5 

     France 5.3 1.8 1.6 

     Italy 1.2 0.1 0.1 

     Small countries * 7.2 0.6 1.0 

     Nordic countries ** 6.4 0.3 1.0 

Asia 27.3 87.1 77.9 

     Japan 23.2 83.1 62.0 

     Korea 1.5 3.4 13.7 

World 100.0 100.0 100.0 

*: Austria, Belgium, Netherlands, Switzerland 

**: Denmark, Finland, Norway, Sweden 
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Table 5: Distribution of firms, clean inventions and patenting by industry (2003-2005) 

Industrial sectors 
Firm share 

 (%) 

Share of clean 

patents (%) 

Share of all  

patents (%) 

Industrial Goods & Services 28.4 28.7 27.3 

Automobiles & Parts 9.9 26.2 14.8 

Personal & Household Goods 7.0 13.2 14.5 

Technology 17.8 11.1 24.0 

Chemicals 9.4 9.8 10.3 

Utilities 2.3 3.6 0.7 

Basic Resources 2.9 2.6 2.0 

Media 0.5 1.5 1.1 

Construction & Materials 3.5 1.4 1.0 

Oil & Gas 2.7 1.0 1.0 

Telecommunications 1.3 0.6 1.8 

Health Care 11.3 0.3 1.3 

Banks 0.6 0.0 0.0 

Retail 1.0 0.0 0.1 

Financial Services 0.5 0.0 0.0 

Insurance 0.1 0.0 0.0 

Travel & Leisure 0.7 0.0 0.1 

  Total 100.0 100.0 100.0 

 

Tables 4 and 5 show firms, total patents and clean energy patents distribution according to the location 

of the firm’s global headquarters. In North America and Europe, the share of firms largely exceeds 

their share of patents, whereas the opposite is true for Asia (where one quarter of firms produces more 

than three quarters of the patents). This overwhelming contribution of Asian patents is largely the 

consequence of the institutional bias induced by counting priority patents. However, this does not 

prevent an unbiased comparison of the share of clean patents of a group of firms (from a given country 

or industry) with the share of the same group when considering all technologies. Two industries 

contribute to more than 50% of clean energy patenting, “Industrial goods & services” and 

“Automobiles & parts”
18

. 

 

                                                           
18

 The strong commitment of car manufacturers to clean patenting is linked to the boom in patents in batteries 

and fuel cells since the late 1990s. These represent more than half the clean patents in our dataset. 
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Appendix 3. Correlation matrix 

  

   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

(1) SRC1986-2002 1              

(2) SRC1994-2002 0.68* 1             

(3) DIV 0.36* 0.39* 1            

(4) Own Stock Clean Energy 

Patents   
0.62* 0.77* 0.40* 1           

(5) Own Stock Other tech 

Patents   
0.35* 0.24* 0.22* 0.69* 1          

(6) GDP (log) -0.02 -0.03 0.01 0.07* 0.19*          

(7) GDP per capita (log) -0.07* -0.03 -0.01 -0.03 -0.02 0.26* 1        

(8) UE -0.07* -0.04 -0.01 -0.20* -0.36* -0.70* 0.04 1       

(9) ML 0.06 0.04 0.08* 0.07* 0.06 -0.09* -0.02 0.04 1      

(10) MH 0.20* 0.15* 0.08* 0.18* 0.10* -0.05 0.04 0.06 -0.17* 1     

(11) HT -0.23* -0.20* -0.21* -0.14* 0.03 0.13* -0.02 -0.19* -0.19* -0.45* 1    

(12) KIS 0.06 0.05 0.12* -0.07* -0.10* 0.02 0.05 0.07* -0.11* -0.28* -0.29* 1   

(13) Non-KIS -0.02 0.02 0.03 -0.01 -0.07* -0.05 0.02 0.11* -0.05 -0.13* -0.14* -0.08* 1  

(14) Energy 0.23* 0.19* 0.05 0.17* 0.10* -0.01 -0.10* -0.01 0.01 0.25* -0.29* 0.02 -0.05 1 

(15) No previous Clean Energy 

Patent (1986-2002) 
-0.48* -0.69* -0.34* -0.93* -0.54* -0.04 0.01 0.13* -0.07* -0.17* 0.13* 0.09* -0.01 -0.13* 

 *: significant at 5% 
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Table 1 : Variable definitions 

EXPLAINED VARIABLES  

SRS2003-2005 
Symmetric Relative Specialisation index computed on the 2003-2005 

period (transformed) 

  

EXPLANATORY VARIABLES  

  Firm level variables*  

SRS 
Symmetric Relative Specialisation index computed on the 1986-2002 

period, in logarithm.  

SRS1994-2002 
Symmetric Relative Specialisation index computed on the 1994-2002 

period, in logarithm. 

DIV  
Inverse of the Herfindahl index computed on IPC classification (35 

classes).  

Own stock Clean Energy Patents (log 

K
C
) 

Stock of clean energy patents on the 1986-2002 period 

No previous Clean Energy Patent  No clean energy patents on the 1986-2002 period 

Own stock other tech Patents (log K
-C

) Stock of other tech patents on the 1986-2002 period 

Low Tech 

151–159, 160, 171–177, 181–183, 191–193, 200–209, 210–219, 220–229, 

361–366, 371,  

and 372 industries in the NACE classification (rev 1.1) 

Medium-Low Tech 
231–233, 251, 252, 261–268, 271–275, 281–287, and 351 industries  

in the NACE classification (rev 1). 

Medium-High Tech 

241–243, 245-247, 291–297, 311–316, 341–343, 352 and 354-355 

industries in  

the NACE classification (rev 1) 

High Tech 
244, 300, 321–323, 331–335 and 353 industries from the NACE 

classification (rev 1) 

KIB Services 
40, 41, 61, 62, 64-67, 70-74, 80, 85 and 92 industries in the NACE 

classification (rev 1). 

Non KIB Services 

Services that are not classified in the 40, 41, 61, 62, 64-67, 70-74, 80, 85 

and 92 industries 

 in the NACE classification (rev 1). 

Energy Sectors 

Automobiles & parts, Electricity, Gas, water & multi-utilities, Industrial 

transportation ,  

Oil & gas producers, Oil equipment, services & distribution, Commercial 

vehicles & trucks 

  National level variables  

     EU country Dummy is 1 for EU firms 

     GDP (log) GDP level in US$ (in log) 2002 

     GDP per capita (log) GDP level in US$ per capital (in log) 2002 

When not specified, variables are computed on the 1986-2002 period. 

  



28 
 

Table 2: Descriptive statistics 

 Mean 
Std. 

Dev. 
Min Max 

EXPLAINED VARIABLES     

 SRC2003-2005 -0.60 0.56 -1.00 0.95 

     

EXPLANATORY VARIABLES     

 SRC  -0.54 0.54 -1.00 0.99 

 DIV 5.89 3.68 1.17 21.49 

 Own Stock Clean Energy Patents (log K
C
) -1.73 4.50 -6.91 7.91 

 Own Stock Other Tech. Patents (log K
D
) 5.56 1.82 1.66 11.41 

 GDP (log) 28.63 1.37 23.23 30.03 

 GDP per capital (log) 10.44 0.48 5.70 11.23 

 UE firm 0.37 0.48 0.00 1.00 

 Medium-Low Tech 0.06 0.24 0.00 1.00 

 Medium-High Tech 0.30 0.46 0.00 1.00 

 High Tech 0.32 0.47 0.00 1.00 

 KIB Services 0.15 0.36 0.00 1.00 

 Non KIB Services 0.04 0.19 0.00 1.00 

 Energy Sectors 0.15 0.36 0.00 1.00 

 No previous Clean Energy Patent (1986-2002) 0.39 0.49 0.00 1.00 
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Table 3: Econometric results 

                                                    Models (1) (2) (3) (4) (5) 

Variables OLS Tobit Tobit Tobit Tobit 

SRC1986-2002 0.376*** 0.047*** 0.048***  0.077*** 

 (0.054) (0.017) (0.017)  (0.024) 

SRC1994-2002    0.078***  

    (0.016)  

DIV 0.007** 0.002** 0.005 0.003** 0.001 

 (0.004) (0.001) (0.004) (0.001) (0.001) 

DIVsquared   -0.0001   

   (0.0002)   

Specialisation x DIV     -0.003* 

     (0.002) 

Own Stock Clean Energy Patents (log KC) 0.125*** 0.028*** 0.027*** 0.016*** 0.026*** 

 (0.015) (0.006) (0.006) (0.006) (0.006) 

Own Stock Other tech Patents (log KD) -0.023 -0.003 -0.003 0.005 -0.001 

 (0.015) (0.006) (0.006) (0.005) (0.006) 

GDP (log) -0.008 -0.005 -0.005 -0.005 -0.005 

 (0.014) (0.004) (0.004) (0.004) (0.004) 

GDP per capita (log) -0.030 -0.011* -0.012** -0.012** -0.010* 

 (0.028) (0.006) (0.006) (0.005) (0.006) 

UE 0.005 0.002 0.002 0.001 0.003 

 (0.039) (0.011) (0.011) (0.011) (0.011) 

ML 0.060 0.012 0.012 0.010 0.013 

 (0.059) (0.016) (0.016) (0.016) (0.016) 

MH 0.089** 0.023* 0.023* 0.025* 0.023* 

 (0.041) (0.013) (0.013) (0.013) (0.013) 

HT -0.028 -0.002 -0.002 0.001 -0.002 

 (0.041) (0.013) (0.013) (0.013) (0.013) 

KIS 0.072 0.018 0.019 0.019 0.019 

 (0.047) (0.016) (0.016) (0.015) (0.016) 

Non-KIS -0.043 -0.005 -0.005 0.001 -0.004 

 (0.070) (0.020) (0.020) (0.021) (0.020) 

Energy 0.096*** 0.024** 0.024** 0.023** 0.023** 

 (0.037) (0.009) (0.009) (0.009) (0.009) 

H0 : All coeff=0 88.77*** 87.92*** 82.76*** 95.22*** 81.67*** 

Log Likelihood  -629.4 -629.1 -621.8 -627.7 

R-Squared 0.565     

Notes: *, **, *** significant at 10%, 5% and 1% levels. The number of observations is 946. The explained variable is the 

relative specialisation index in clean energy technologies in the 2003-2005 period. The depreciation rate for the computation 

of stocks of knowledge is 15% in all columns. Country level variables: GDP, GDP per capita are 2002 variables. Industry 

level: 3 industry dummies according to the technological level (OECD classification extended to services), KIBS and non-

KIBS dummies as well as an energy dummy.  When stock values are 0, the value 0.001 is added to compute the log. A 

dummy is introduced when the weighted stocks of clean patents are null: The dichotomic variable No previous Clean 

Energy Patent is not reported in the table. For manufacturing firms: HT is set to 1 if the firm belongs to the 244, 300, 321–

323, 331–335 and 353 industries in the NACE classification (rev 1). MH is set to 1 if the firm belongs to the 241–243, 245-

247, 291–297, 311–316, 341–343, 352 and 354-355 industries in the NACE classification (rev 1). ML is set to 1 if the firm 

belongs to the 231–233, 251, 252, 261–268, 271–275, 281–287, and 351 industries in the NACE classification (rev 1). LT is 

set to 1 if the firm belongs to the 151–159, 160, 171–177, 181–183, 191–193, 200–209, 210–219, 220–229, 361–366, 371, 

and 372 industries in the NACE classification (rev 1.1). For service firms, the codification is the following: KIS is set to 1 if 

the firm belongs to the 40, 41, 61, 62, 64-67, 70-74, 80, 85 and 92 industries in the NACE classification (rev 1). Non-KIS is 

set to 1 if the firm belongs to other services. Low Tech industries are taken as a reference. Robust standard errors are in 

parentheses. For the Tobit models, coefficients reported are marginal effects computed at the left truncated mean, 

E(SRC l x, SRC > -1). 

 


